On primal and weakly primal ideals over commutative semirings

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Primal and Weakly Primal Ideals over Commutative Semirings

Since the theory of ideals plays an important role in the theory of semirings, in this paper we will make an intensive study of the notions of primal and weakly primal ideals in commutative semirings with an identity 1. It is shown that these notions inherit most of the essential properties of the primal and weakly primal ideals of a commutative ring with non-zero identity. Also, the relationsh...

متن کامل

Primal strong co-ideals in semirings

In this paper, we introduce the notion of primal strong co-ideals and give some results involving them. It is shown thatsubtractive strong co-ideals are intersection of all primal strong co-ideals that contain them. Also we prove that the representation of strong co-ideals as reduced intersections of primal strong co-ideals is unique.

متن کامل

primal strong co-ideals in semirings

in this paper, we introduce the notion of primal strong co-ideals and give some results involving them. it is shown thatsubtractive strong co-ideals are intersection of all primal strong co-ideals that contain them. also we prove that the representation of strong co-ideals as reduced intersections of primal strong co-ideals is unique.

متن کامل

Commutative Ideal Theory without Finiteness Conditions: Primal Ideals

Our goal is to establish an efficient decomposition of an ideal A of a commutative ring R as an intersection of primal ideals. We prove the existence of a canonical primal decomposition: A = ⋂ P∈XA A(P ), where the A(P ) are isolated components of A that are primal ideals having distinct and incomparable adjoint primes P . For this purpose we define the set Ass(A) of associated primes of the id...

متن کامل

Primal Ideals and Isolated Components

Introduction. L. Fuchs [2 ] has given for Noetherian rings a theory of the representation of an ideal as an intersection of primal ideals, the theory being in many ways analogous to the classical Noether theory. An ideal Q is primal if the elements not prime to Q form an ideal, necessarily prime, called the adjoint of Q. Primary ideals are necessarily primal, but not conversely. Analogous resul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Glasnik Matematicki

سال: 2008

ISSN: 0017-095X

DOI: 10.3336/gm.43.1.03